Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

11-Methylpyrido[2,3-b]acridine-5,12dione

Brent R. Copp, Brent S. Lindsay, Allen G. Oliver and Clifton E. F. Rickard*

Department of Chemistry, University of Auckand, Private Bag 92019, Auckland, New Zealand
Correspondence e-mail: c.rickard@auckland.ac.nz

Received 13 July 1999
Accepted 22 October 1999
The title molecule, $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, is a synthetic precursor to the cytotoxic marine alkaloid ascididemin and is also structurally related to cleistopholine, a plant-derived antifungal agent. The molecule was found to be essentially planar with the only significant deviations from planarity being for the quinone O atoms.

Comment

The search for new human anticancer agents from the marine environment has resulted in the isolation of a large range of polycyclic alkaloids based upon the pyridoacridine framework (Molinski, 1993). Two such examples are the cytotoxic pentacyclic alkaloids ascididemin and its analogue 2-bromoleptoclinidinone (Kobayashi et al., 1988; Bloor \& Schmitz, 1987; deGuzman \& Schmitz, 1989; Bracher, 1997; Lindsay et al., 1998). Both molecules associate with DNA, probably via base-pair intercalation. In direct contrast to this, previous studies have noted that the tetracyclic synthetic precursor to ascididemin, 11-methylpyrido[2,3-b]acridine-5,12-dione, (I) (NSC 659780), exhibits only modest cytotoxicity (Bracher, 1997), and moderate antibacterial and antifungal properties (Lindsay et al., 1995). As part of our studies directed towards understanding the chemistry (Lindsay et al., 1997, 1998; Copp et al., 1999) and biological activities (Lindsay et al., 1995; Copp et al., 1999) of ascididemin and related marine alkaloids, we now report on the crystal structure of (I).

(I)

The title molecule (see Fig. 1) was found to be highly planar, with the greatest deviations from the mean molecular plane being for the quinone atoms O1 $[0.125(4) \AA]$ and O2

Figure 1
The structure of (I) showing 50% probability displacement ellipsoids.

Figure 2
The unit cell contents showing the $\pi-\pi$ stacking.
[0.195 (4) \AA], thus making it a good DNA intercalating chromophore. There are few reported X-ray studies of the quinoline-quinone substructure present in rings $A B$ of (I) although this fragment is present in many biologically active agents, including the antibiotic streptonigrin (Chiu \& Lipscomb, 1975) and aza-analogues of the antitumour agent mitoxantrone (Krapcho et al., 1994). Bond lengths observed for rings A and B of (I) are comparable with those reported for other quinoline-quinone-bearing compounds (Chiu \& Lipscomb, 1975; Kita et al., 1991; Gieren \& Schanda, 1977). However, steric congestion between the quinone O1 and methyl $\mathrm{C1}^{\prime}$ atoms is apparent in (I), as evidenced by bond angles of 118.8 (3) ($\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 12 \mathrm{a}$) and 122.6 (3) ${ }^{\circ}(\mathrm{O} 1-$ $\mathrm{C} 12-\mathrm{C} 11 \mathrm{a})$. This interaction is presumably also responsible for the quinone O atoms bending out of the plane of the rings. Extensive $\pi-\pi$ stacking was evident in the crystal of (I), with rings $B C D$ of one molecule overlapping rings $A B C$ of an adjacent molecule (Fig. 2). The perpendicular separation between individual chromophores is $3.4 \AA$.

Experimental

11-Methylpyrido[2,3-b]acridine-5,12-dione was prepared by a published route and yielded spectroscopic data identical in all respects with those reported previously (Bracher, 1989). Recrystallization from a methanol-dichloromethane solution yielded yellow-brown needles [m.p. 520-525 K, literature $513-521 \mathrm{~K}$ (Bracher, 1989)] suitable for X-ray analysis. Full assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data was made by use of standard two-dimensional NMR techniques. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.16(1 \mathrm{H}, d d, J=4.6$, $1.8 \mathrm{~Hz}, \mathrm{H}-2), 8.73(1 \mathrm{H}, d d, J=8.0,1.8 \mathrm{~Hz}, \mathrm{H}-4), 8.45(1 \mathrm{H}, d d, J=8.5$, $0.9 \mathrm{~Hz}, \mathrm{H}-10), 8.38(d d, J=8.5,0.9 \mathrm{~Hz}, \mathrm{H}-7), 7.93(1 \mathrm{H}, d d d, J=8.3,6.9$, $1.4 \mathrm{~Hz}, \mathrm{H}-8), 7.79(1 \mathrm{H}, d d d, J=8.3,6.9,1.4 \mathrm{~Hz}, \mathrm{H}-9), 7.77(1 \mathrm{H}, d d, J=$ $7.9,4.6 \mathrm{~Hz}, \mathrm{H}-3), 3.32\left(3 \mathrm{H}, s, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 183.3 ($s, \mathrm{C}-12$), 181.8 ($d, J=4 \mathrm{~Hz}, \mathrm{C}-5$), 155.6 ($d d d, J=183,8,4 \mathrm{~Hz}$, C-2), $152.7(d d, J=6,3 \mathrm{~Hz}, \mathrm{C}-11), 150.2(t, J=5 \mathrm{~Hz}, \mathrm{C}-12 \mathrm{a}), 148.6(t$, $J=8 \mathrm{~Hz}, \mathrm{C}-6 \mathrm{a}), 147.5(s, \mathrm{C}-5 \mathrm{a}), 135.7(d d, J=170,6 \mathrm{~Hz}, \mathrm{C}-4), 132.7$ $(d d, J=163,9 \mathrm{~Hz}, \mathrm{C}-8), 132.3$ ($d d, J=165,7 \mathrm{~Hz}, \mathrm{C}-7$), $130.0(d, J=$ $7 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{a}), 125.5(d d, J=161,8 \mathrm{~Hz}, \mathrm{C}-10), 129.8(d d, J=163,9 \mathrm{~Hz}$, C-9), 129.8 (m, C-10a), 127.9 ($d d, J=167,9 \mathrm{~Hz}, \mathrm{C}-3$), 125.5 ($m, \mathrm{C}-$ 11a), $16.7\left(q, J=130 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=274.27$
Orthorhombic, $\mathrm{Pca2}_{1}$
$a=25.7526$ (17) \AA
$b=4.2348$ (3) A
$c=11.2966$ (7) \AA
$V=1231.97(14) \AA^{3}$
$Z=4$
$D_{x}=1.479 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD diffractometer
Area-detector ω scans
Absorption correction: multi-scan
(Blessing, 1995; Sheldrick, 1998)
$T_{\text {min }}=0.912, T_{\text {max }}=0.982$
6391 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 5243
\quad reflections
$\theta=1.5-25.0^{\circ}$
$\mu=0.099 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Needle, brown
$0.94 \times 0.18 \times 0.18 \mathrm{~mm}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0608 P)^{2}\right. \\
& \quad+0.3024 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.032 \\
& \Delta \rho_{\max }=0.16 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.141$
$S=1.016$
2040 reflections
190 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C12	$1.195(4)$	C4a-C12a	$1.385(4)$
O2-C5	$1.205(4)$	C4a-C5	$1.483(5)$
N1-C12a	$1.335(4)$	C5a-C11a	$1.430(4)$
N1-C2	$1.338(5)$	C5a-C5	$1.496(4)$
N6-C5a	$1.313(4)$	C11a-C12	$1.489(4)$
N6-C6a	$1.358(4)$	C12a-C12	$1.509(4)$
C1 1 -C11	$1.510(4)$		
O2-C5-C4a	$120.6(3)$	C10a-C11-C1	$119.0(3)$
O2-C5-C5a	$121.6(3)$	O1-C12-C11a	$122.6(3)$
C4a-C5-C5a	$117.9(2)$	O1-C12-C12a	$118.8(3)$
C11a-C11-C10a	$117.6(2)$	C11a-C12-C12a	$118.6(2)$
C11a-C11-C1 1^{\prime}	$123.4(3)$		

structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JA1007). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bloor, S. J. \& Schmitz, F. J. (1987). J. Am. Chem. Soc. 109, 6134-6136.
Bracher, F. (1989). Heterocycles, 29, 2093-2095.
Bracher, F. (1997). Pharmazie, 52, 57-60.
Chiu, Y. Y. H. \& Lipscomb, W. N. (1975). J. Am. Chem. Soc. 97, 2525-2530.
Copp, B. R., Hansen, R. P., Appleton, D. R., Lindsay, B. S., Squire, C. J., Clark, G. R. \& Rickard, C. E. F. (1999). Synth. Commun. 29, 2665-2676.
deGuzman, F. S. \& Schmitz, F. J. (1989). Tetrahedron Lett. 30, 1069-1070.
Gieren, A. \& Schanda, F. (1977). Acta Cryst. B33, 2554-2559.
Kita, Y., Kirihara, M., Okunaka, R., Akai, S., Maeda, H., Tamura, U., Shimooka, K., Ohishi, H. \& Ishida, T. (1991). Chem. Pharm. Bull. 39, 875864.

Kobayashi, J., Cheng, J.-F., Nakamura, H., Ohizumi, Y., Hirata, Y., Sasaki, T., Ohta, T. \& Nozoe, S. (1988). Tetrahedron Lett. 29, 1177-1180.
Krapcho, A. P., Petry, M. E., Getahun, Z., Landi, J. J., Stallman, J., Polsenberg, J. F., Gallagher, C. E., Maresch, M. J. \& Hacker, M. P. (1994). J. Med. Chem. 37, 828-837.
Lindsay, B. S., Barrows, L. R. \& Copp, B. R. (1995). Bioorg. Med. Chem. Lett. 5, 739-742.
Lindsay, B. S., Oliver, A. G., Rickard, C. E. F. \& Copp, B. R. (1998). J. Chem. Crystallogr. 28, 645-648.
Lindsay, B. S., Pearce, A. N. \& Copp, B. R. (1997). Synth. Commun. 27, 25872592.

Molinski, T. F. (1993). Chem. Rev. 93, 1825-1838.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SADABS. Program for Absorption Correction. University of Göttingen, Germany.
Siemens (1994). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

